ФИЗИКА

- Статика флуида
 - Густина и притисак флуида
 - Промена притиска са дубином флуида
 - Паскалов принцип

 - Архимедов принцип. Сила потиска
 - Кохезија и адхезија у течностима. Површински напон.
 - Притисци у људском телу и њихово мерење.

Динамика флуида

- Веза протока и брзине струјања флуида Једначина континутета

- Вискозност и ламинарно струјање. Поазејев закон
- Критеријум за одређивање карактеристика струјања флуида
- Кретање тела кроз вискозни флуида Молекуларни транспортни процеси. Дифузија, осмоза и остали процеси.

Појам флуида

- ваздух, вода, крв, ... гасови и течности
- три агрегатна стања материје

чврста тела –

запремина

сталан облик и

течна тела – (мање-више) стална запремина али не и облик

• гасовита тела – ни стална запремина ни облик

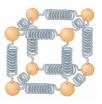
2

Агрегатна стања

- претходна подела условна
- асфалт када се загреје слојеви "теку" један преко другога – понаша се као течност
- стање супстанце зависи од услова под којима се налази (вода – и све остале супстанце)

Појам флуида

- дефиниција флуида: на основу понашања када се нађу под дејством сила
- силе могу да деформишу тело на следеће начине:
 - истезање
 - компримовање
 - увртање
- чврста тела
 - мало се деформишу под дејством силе
- након престанка деформације се враћају у претходни облик
- флуиди


 - лако се деформишуи не враћају се у претходни облик
 - могу да "теку"
 - флуид стање материје у коме она може да тече и мења облик и запремину под дејством веома слабих сила

Агрегатна стања - фазе

- чврсто стање атоми се налазе релативно близу
- силе (привлачне и одбојне) дозвољавају атомима само да осцилују око равнотежних положаја али не и да мењају место на коме се налазе
- силе сличне еластичним опругама које повезују атоме – истежу се и сабијају али не кидају

Агрегатна стања - фазе

- померају кроз течност мењају суседе
- опире се сабијању, али могу лако да се деформишу промене облик (течност нема отпорност на деформације увртања) теку
- међумолекуларне силе су само привлачне
- не дозвољавају атомима да лако напусте течност
- када се налазе у суду попримају његово облик и формира се слободна површина одозго

			_

Агрегатна стања - фазе

- у гасовима атоми удаљени једни од других
- силе које делују између њих – слабе, осим у сударима
- услед тога неотпорни на деформације смицања – могу да теку, али и на остале – могу да се компримују

Флуиди

Због међусобних сличности течности и гасови - флуиди

Флуиди могу да

- 1) "Теку";
- 2) Мењају облик запремине под дејством врло малих сила

Механика флуида: статика

динамика

Статика флуида

- густина и притисак у флуидима
 густине чврстих и течних тела су поредиве
- густина гасова је много мања
- притисак у флуидима?
- крвниатмосферски, ...
- притисак у вези са силом која га изазива
- једна иста сила примењена на различите површине има различит ефекат
- притисак однос нормалне силе и површине на коју је примењена

Ista sila primenjena na različite površine.

Притисак у флуидима у стању мировања увек под правим углом у односу на зидове кад не би био јавила би се додатна сила која би изазвала кретање

Притисак

• SI, N/m²=Pa

 $P = \frac{F}{S}$

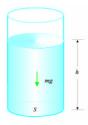
• Притисак делује на све површине у флудима (замишљене или не)

100

11

Промена притиска са дубином

- Вода: рониоци: на сваких 10 м расте за по 1 атмосферу (атмосферски притисак на нивоу мора)
- Атмосферски: опада са висином значајно за планинарење и лет авионима
- закључци:
 - притисак зависи од дубине флуида
 - брже се мења у води него у ваздуху
 - густина воде 1000 kg/m³, густина ваздуха 1,2 kg/m³
 - то би могло да има везе са густином флуида


•			
•			

Промена притиска са дубином

- последица је тежине флуида дно посуде носи целу тежину
- ТЕЖИНА $Q{=}mg$ $P = \frac{mg}{S}$ $m = \rho V, \qquad m = \rho Sh,$

Промена притиска са дубином

• атмосфера - аналогно

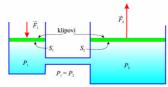
$$P = \frac{mg}{S}$$

1 atmosfera = $P_{atm} = 1,01 \times 10^5 \text{ N/m}^2 = 101 \text{ kPa}.$

• последица тежине ваздуха изнад површине Земље

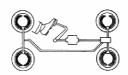
14

Паскалов закон


- Како створити притисак у флуиду?
- Деловањем силе на њега
 - лакше је ако је затворен налази се у неком систему крвоток.
 - уколико је систем отворен (река), флуид под дејством силе отиче
- атоми флуида се слободно крећу преносе притисак на све стране
- у чврстом телу притисак се преноси само у правцу дејства силе атоми не могу да се слободно крећу
- флуид: притисак се преноси без умањења, подједнако на све стране – Паскалов принцип

Паскалов закон-примена-хидраулични системи 2 спојена цилиндра,

- напуњена флуидом и затворена покретним клиповима
- примењујемо силу на мањи цилиндар преноси се притисак на већи на који делује већа сила
- Пример:


 - S₂=5S₁
 силом од F₁=100N,
 добија се F₂=500N

Slika 6.7: Hidraulični sistem sa dva cilindra i dva klipa

$$\frac{F_1}{S_1} = \frac{F_2}{S_2}.$$

- Повећава се сила али не и износ рада!
- A=Fd
- Већи цилиндар се помера на мање растојање па је рад једнак уложеном (ако нема трења).

Hidraulični kočioni sistem kod automobila.

17

Калибрација

- Колики је притисак у избушеној аутомобилској гуми?
 0 Паскала?

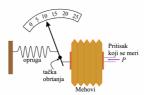
 - различит је од 0 Паскала?
- Мерач притиска код вулканизера би показао нулу
 Он је дизајниран тако да показује *разлику* притиска у систему и атмосферског
- Наше тело је пример тако дизајнираног система
- таше тело је пример тако дизајнираног система.
 Укупан притисак у њему је збир свих притисака који делују на њега и у њему: атмосфера, срце, ...
 Атмосферски притисак нема утицај на струјање крви

 додаје се притиску који ствара срце и при упумпавању и при испумпавању крви

- Закључак: и крвни притисак се мери у односу на атмосферски Подешавање уређаја за мерење притиска да показују разлику у односу на атмосферски калибрација такав притисак се зове калибрисани

Апсолутни притисак, 9.11.2015.

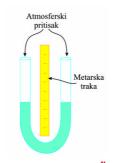
• Апсолутни притисак – збир калибрисаног и атмосферског


$$P_{abs} = P_k + P_{atm}$$

19

Мерење притиска - анероид

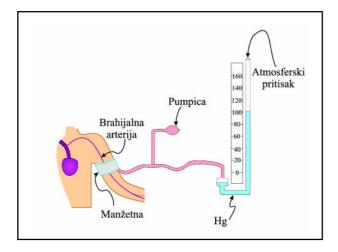
- користе чињеницу да се притисак кроз флуиде преноси без губитака
- иниструменти могу да буду "довољно" удаљени од система у коме мере притисак



Анероид — притисак ствара силу која се преводи у показивање казаљке, ...

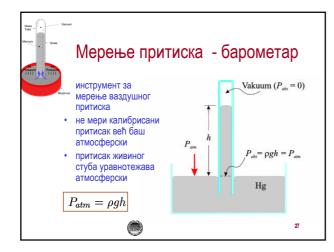
Мерење притиска - манометар

- флуиди стварају притисак услед тежине $P = \rho g h$
- U цев манометар
- притисак са обе стране цеви мора да се уравнотежи – иначе флуид тече.



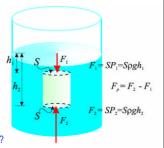
Мерење притиска - манометар • притисак у систему мањи од атмосферског Atmosferski pritisak Metarska traka Ваlon Р де - pgh Візанициан Ві

Мерење притиска - манометар

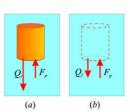

- Показују калибрисани притисак
- Најчешћи флуид је жива
- манометар за мерење крвног притиска
- манжетна ставља се на руку у нивоу срца
- пумпа се ваздух ствара притисак у манжетни, када постане већи од крвног крв испод манжетне престане да струји
- испушта се лагано ваздух док не почне поново да струји у млазу

- 120/80 типична вредност притиска
- горњи притисак (mmHg) (систолни (максимални) притисак када лева комора пумпа крв у аорту)
 - указује на ефикасност срца при упумпавању срца у артерије –
- доњи притисак (дијастолни (минимални) јавља се када се комора пуни крвљу)
 - указује на еластичност артерија које одржавају притисак између два откуцаја на потребном нивоу

Архимедов принцип


- Када изађемо из воде, руке и ноге нам изгледају тежи него што јесу
- разлог?
- У води постоји додатна сила која нам помаже да се одржавамо на њој.
- шта изазива ту силу?
- да ли та сила делује на нас и када смо ван воде – тј. у атмосфери – или делује само на балоне пуњене хелијумом?
- зашто нека тела пливају на води а нека не?

Архимедов принцип


- разлог-пораст притиска са дубином
- сила која делује на доњи део предмета је већа од оне која делује на горњи – резултујућа сила делује на горе
- сила потиска
- уколико је већа од тежине тела – издиже тело на површину воде
- ако је мања од тежине тело тоне
- колики је интензитет ове силе?

29

Архимедов принцип

- колики је интензитет силе потиска?
- Када тело извадимо из флуида простор које је оно заузимало сада заузме флуид
- његова тежина је компензована околним флуидом, па је сила потиска једнака тежини флуида који је дошао на место тела.
- Архимедов принцип: Сила потиска којом флуид делује на тело које се налази у њему је једнака тежини флуида који је био на том месту које тело сада заузима.

Архимедов принцип – пливање и

тоњење

- грумен глине на води тоне
- ако га обликујемо у облику брода, односно орахове љуске, пливаће
- разлог је што кад промени облик истискује више воде већа је сила потиска.
- бродови од челика

$$F_p = Q_f$$

31

Архимедов принцип - густина

- средња густина тела одређује да ли ће тело да плива или тоне
 - уколико је мања од густине флуида – пливаће
 - ако је већа тонуће
- ако плива колико дубоко ће да утоне?
- однос запремине тела утонулог у флуид и укупне запремине тела
- запремина потопљеног дела је једнака запремини истиснутог флуида

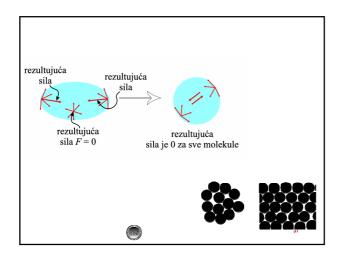
$$\kappa = \frac{V_{pot}}{V_t} = \frac{V_f}{V_t} \qquad \frac{V_f}{V_t} = \frac{m_f/\rho_f}{m_t/\bar{\rho}_t}$$

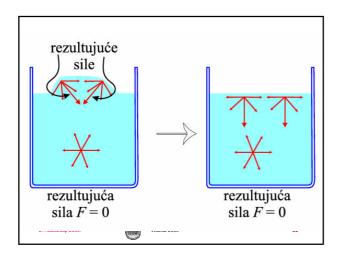
маса истиснутог флуида је іеднака маси тела

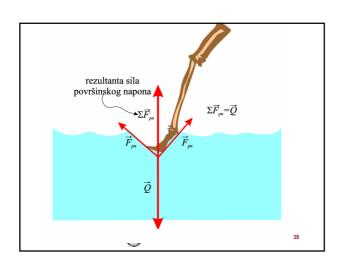
32

Кохезија и адхезија у течностима – површински напон

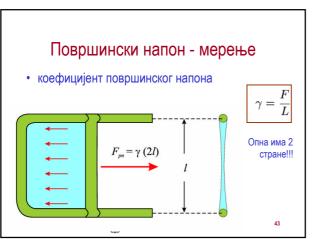
- привлачне међумолекуларне силе између молекула исте врсте кохезионе
 - омогућују неким инсектима да ходају по површини воде
 - одговорне за облик капи
- привлачне међумолекуларне силе између молекулар различите врсте адхезионе
 - држе капи воде на прозорском стаклу, на лишћу биљака,

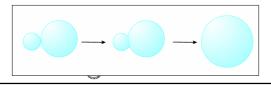





Кохезија и адхезија у течностима – површински напон

- кохезионе силе слободна површина течности се понаша као затегнута гума
- контрахује се до најмање могуће површине -формира сферну кап ако је могуће
- ефекат површински напон
- молекули који су унутра окружени једнаким бројем суседа сила је једнака нули
 ако је кап несферна резултујућа сила приморава молекуле да заузму положаје тако да је слободна површина минимална сфера.

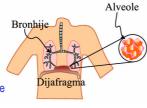



0,0756
0,0728
0,0589
0,0370
0,0223
0,0631
0,465
0,032
0,058
0,073
1,000
0,0157
0,00012

- Површински напон ствара притисак унутар мехурова.
- да ли тај притисак зависи од величине мехура?
- услед тежње да слободна површина буде што мања, сабија гас унутар мехура и повећава му притисак
- дечији балон: када га надувамо и пустимо, испушта ваздух и креће се убрзано, највеће убрзање доживљава када се сакупи на најмању могућу величину => притисак је највећи када је површина најмања
- Калибрисани притисак унутар мехура је

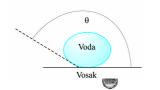
$$P = \frac{4\gamma}{r},$$

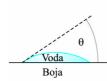
•	Последица: кад се сударе мехури,
	ваздух из мањег уђе у већи и
	формира се још већи

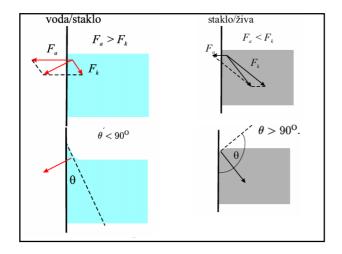

$$P = \frac{4\gamma}{r},$$

Површински напон и плућа

- У плућима постоје "мехурићи" – алвеоле
- контрахују се услед површинског напона који је у одређеном распону
- ако је превелик не можемо да удахнемо код утопљеника
- неке бебе се рађају без супстанце под називом сурфактант која смањује површински напон

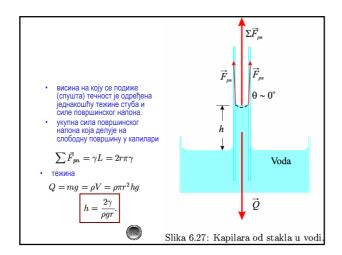


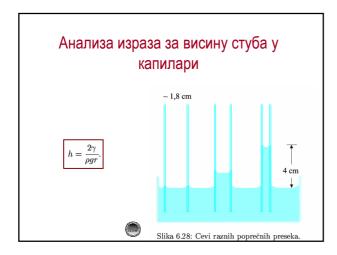



47

Адхезија. Капиларне појаве

- Зашто вода лако клизи низ опрана и воскирана кола а низ неопрана и невоскирана теже?
- Одговор:
 - адхезионе силе између воска и воде су мање него између воде и боје
 - то доводи до различитих вредности углова квашења


Угао квашења за неке супстанце


Supstance	Ugao kvašenja θ
Živa-staklo	140°
Voda-staklo	$0_{\mathbf{O}}$
Voda-parafin	$107^{\rm O}$
Voda-srebro	$90_{\rm O}$
Organske tečnosti-staklo	$0_{\mathbf{O}}$
Etila alkohol-staklo	$0_{\mathbf{O}}$
Kerozin-staklo	26 ⁰

50

Капиларне појаве • капиларе – узане цеви (пречник мањи од 1 милиметра) отворене на оба краја • појаве – услед разлика кохезионих адхезионих сила • ниво слободне површине у капилари се не понаша као код спојеног суда – подиже се или слушта – зависно од комбинације супстанци — ако течност "кваси" суд – подиже се е закривљена слободна површина - менискус Slika 6.26: Kapilara od stakla u živi.

Притисци у људском телу и мерење

- Крвни притисак
- Очни
- у плућима
- у кичменој мождини и лобањи
- у мокраћној бешици
- у коштаном систему

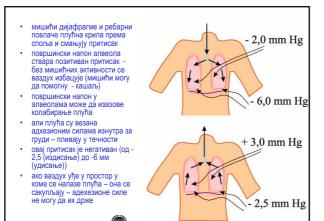
Притисци у људском телу и мерење

Deo tela	Kalibrisani pritisak u mm Hg
Krvni pritisak u velikim arterijama (mirovanje)	
- Maksimalan (sistolni)	100-140
- Minimalni (dijastolni)	60-90
Krvni pritisak u velikim venama	4-15
Oko	12-24
Mozak i kičmena moždina (ležeći položaj)	5-12
Mokraćna bešika	
- kada nije puna	0-25
- kada je puna	100-150
Grudna šupljina (izmedju pluća i rebara)	-8 do -4
Izmedju plućnih krila	-2 do +3
Digestivni trakt	
- esophagus	-2
- u stomaku	0-20
- u crevima	10-20
Srednje uvo	< 1

Tabela 6.3: Tipič<u>ne</u> vrednosti pritiska u liudskom telu.

Очни притисак

- Очи имају овални облик услед постојања притиска у њима: од 12,0-24,0 мм
- Ако нема циркулације, пораст притиска глауком (до 85 мм)
- сила коју изазове овај притисак може да оштети очни нерв
- мерење очног притиска деловање неком силом на око и праћење његове деформације


56

Притисак у плућима

- расте и опада са сваким узимањем и избацивањем ваздуха из њих
- када удишемо мањи од атмосферског (калибрисани притисак негативан)
- када издишемо већи од атмосферског (калибрисани притисак позитиван)
- резултат је више утицаја

_				
_				
_				
_				
_				
_				
_				
_				
_				

